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2. Introduction:
In this lesson we shall discuss the notion of compactness in a
metric space. In first section we shall define compact set and
we discuss certain theorems which characterize compact sets
and give a complete description of compact sets in a metric
space. Next we shall discuss the characteristics of a compact
sets under continuous map, finite intersection property, and
relations between compactness, sequential compactness and
BW-compactness.

Some Definitions:

> Cover:

Consider a nonempty set X. Let AC X. a collection U= {U.: a€ A}
of subsets of X is said to be a cover of Aif AS U, 4 Ua

> Subover:

A sub-collection Up of U is called a sub-cover of U for A if Uois
also a cover of A.

> Open Cover: In a metric space (X, d), a cover U= {Ux a€ A} of X
is called an open cover of X if each Uzis open sets of (X, d).

+* 3. Compact Metric Space

A metric space (X, d) is said to be compact if for each open cover U=
{Ux: a€ A} of X (Uge gUa = X), d afinite subcover Uo of ‘U for X.

i.e. for each open cover U= {Us: a€ A} of X, d Uo= {U,: i =
1.2,...,n} such that U, Ui = X.



» Theorem 3.1: Every finite set in a metric space is compact.

Proof: Let (X,d) be ametric spaceand A = {x;:i = 1,2,..,n} bea
finite subset of X.

Let U= {U«: o€ A} be an open cover of A.
Then A € Uye 4 Ua

So each x; € Uy, for some Uy, of the family U.
Therefore A € (Ui, Ug,)

Hence {Ual.: i =1.2,.., n} = U, (say) is a finite subcover of U for A
and so A is compactm

e Corollary: Singleton setis compact.

» Theorem 3.2 : Every closed subset of a compact Metric Space is
compact.

Proof: Let (X, d) be a compact metric space and A(S X) be closed. Let
U= {Us: a€ A} be an open cover of A in X.

Therefore ACU e 4 Ua.
Since A is closed, (X-A) is open in X.
Then (Uge 4 Ua) U(X — A) is clearly an open cover of X.

It is given that (X, d)is compact. Then that above cover of X has a
finite sub-cover Uo = {Uy,, Ug,, -+ -, Ug,,, (X — A)} (say).

Therefore (Ui Ug) UX —A4) =X
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= (U?=1 Uai) 2 A
Let F = (Ug:i = 1,2,..,n)

Then F is a finite sub-cover of the open cover U for A.

Hence A is compactm

» Theorem 3.3: every compact subset of a metric space is closed.

Proof: let (X,d) be a metric space and A be any compact subset of X.
To show that A is closed we will prove A°=(X-A) is open in X.

For, let y€A®and x€A. then clearly x#y = d(x,y)> 0

Let d(x,y)=rx, then the open sphere Srx(x) and Srx(y) are such
that S%x(x) N S%x(y) = ¢ 2 2

If z € S%x(x) N S%x(y) ,d(z,x)< %x and d(z,y)< %" and by triangle
inequality

d(x,y) < d(x,z) +d(z,y) < %x +%" =1

Which contradicts the fact that d(x,y)=rx

Now consider the collection U={Sr«(x): x € A}
2
Clearly U,eqSrx(x) 2 A
2

Therefore U is an open cover of A.
Since A is compact set, d a finite subcover Uo of ‘U for 4.

Let Uo={Srx;(x;):i = 1,2,..,n} so that UL, Sr«; (x;) 2 A.
: Tx
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Let By = ﬂ?=1 Sﬁ(y).
2

Being finite intersection of open sets By, is open containing y €A,

Again for each x; € A, Srxi(x;) N S, (y) = ¢
2

2

= Sm(xl) N By - ¢ Vx;
2

=><U?=1Sﬁ (xi)> N B,=¢

2
=>ANB,=¢
=B, € A°
Since y € A is arbitrary, Uye4c B, = A°
Since arbitrary union of open sets is open, A€ is open in X.

Hence A is closedm

» Corollary : A subset A of a compact metric space is compact if and
only if A is closed.

» Theorem 3.4: every compact subset A of a metric space (X, d) is
bounded.

Proof: Let A(S X) be a compact.

Let us choose an open cover U consisting of open spheres of unit
radius.

i.e. U={S;(x):x € A}.
Now U,esS1(x) 2 A



Since A is compact, ‘U has a finite sub-cover
Uo={S;(x;):i =1,2,..,n}.
Then UL, S;(x;) 2 A
Let M = max{d(xl-,xj): 1<i<j<n}
Let x,y € A be any two elements, then d elements x; and X;
Such that x € §;(x;) andy € S, (xj).
By triangle inequality
d(x,y) < d(x,x;) + d(xl-,xj) + d(xj,y) <1+M+1=M+2

=A is boundedm

» Heine-Borel Theorem:

Every closed and bounded subset of R is compact.

e Result: A subsetS of Ris compact if and only if it is closed and
bounded.

“ 4. Compactness and continuity

In this section we will learn about the nature of a compact set under
a continuous map.

> Theorem 4.1: Let (X, d,) and (Y, d,)) be two metric spaces and

f:X — Y be continuous. Then the continuous image of a
compact subset 4 of X is compactin?Y .



Proof: Let A be a compact subset of X and U={V,:a € A} be an
open cover of f(A).

Therefore f(A) € Uges Va
=A S f_l(UaeA Va)
=A S UaEAf_l(Va)

Since f is continuous and each V, is openin Y, f~1(V,) are also open
in X.

Hence & = {f ~1(V,): a € A} is an open cover of A.
Since A is compact, d a finite sub-cover

Fo = {f " (Ve):i = 1,2,..,m} .

Therefore A< U, f'(Va,)

=AC (UL, V)

> f(A) € UL,V

Hence f(A) is compactm

v Note: The converse of the above theorem is not necessarily
true. That is, if a function maps compact sets into compact sets,
it does not always mean that the function is continuous.

Counter example:
Consider the Dirichlet function f: R = R, defined by
_(LifxeQ

Clearly f is not continuous map. But it maps every compact subset
of R to a compact sub-set {0,1}(as it is finite subset) of R(co-
domain).



e Corollary:
Let (X, d,) and (Y, d,) be two metric spaces and f: X — Y be

continuous. If A(S X) be a compact then f(A) is closed and
bounded inY.

e Corollary:
Let (X, d,) and (Y, d,) be two metric spaces and
X be compact. Let f: X — Y be continuous. If A(S X) be closed,
then f(A) is closed and bounded inY.

L)

% 5, Finite Intersection Property
A family F of subsets in a metric space (X, d) is said to have Finite

Intersection Property (F.1.P) if every finite subfamily Fo of F has
nonempty intersection.

i.e. if F={F,: a € A} be any family of subsets of X.
Then for every finite subfamily Fo={F,:i = 1,2,..,n} Ni¥, Fo, # .

e.g. The family{ [—n, n]: n € N} of closed intervals of R has Finite
Intersection Property.

» Theorem 5.1: A metric space (X, d) is compact If and only if for
every collection of closed subsets F={F,: a € A} in X having
Finite Intersection Property, the intersection N,¢4 F, of the
entire collection is nonempty.



Proof: Let (X, d) be compact metric space and F={F,: « € A} be any
family of closed sets in (X, d) with F.I.P

If possible let Nyeq Fy = .
Now NgeaFy = ¢ = (NgeaFa) =X
“Uaer Fa=X.

Since each F, is closed, complement of each F, is open in X.

i.e. {F§: a € A} are family of open sets in X.
~U={F§: a € A}is an open cover of X.

Since X is supposed to be compact d a finite subcover
o={FaCi:i:1,2,..,n} of U for X.

ie UL, Fi=X
:(U?=1FOZ')C = d)
in‘l(l=11-70.’i — (,b

Now F's are closed setsand NjZ; F,; = ¢ contradicts the fact that
has F.L.P.

Hence NgeqFy # .

Conversely suppose every family of closed sets in (X, d) with F.I.P
has nonempty intersection. We have to prove that X is compact.

It is quite similar to prove that for every family of closed sets in X
with empty intersection does not have F.I.P. = X is compact.

For let U={G,: @ € A}be an open cover of X.

Then Ugeq G, = X and taking complements we get
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(Nos=0

a€eA

Since G,’s are open, G;’s are closed in X.

Then {GS: a € A} is a family of closed sets in X whose intersection is
empty.

Then by hypothesis this family does not have F.I.P. and so 4 a finite
subfamily say {Ggi: i =1,2,..,n} such that N}L, Gg, = @

:(n?=1 GCCZ'i)C = X
Uil Gy, =X

Hence {Gai: i=1,2,.., n} = Uy(say) isa finite subcover of the open
cover U for X.

Hence X

Is X compactm

¢ Definition (relatively compact): Let (X, d) be a metric space. A
subset A4 is said to be relatively compact if A is compact inX.

o Definition(e- net): Let A be a subset of a metric space (X, d). Let
€ > 0 be areal number. Then a non-empty subset B of 4 is said
tobe an € — net forset Aifforany a € A4, d a point x € B such
that a € S.(x).

o Definition(Totally Bounded Set/ Pre-compact): A non-empty

subset Aof a metric space (X, d) is said to be totally bounded if
for any € > 0 4 a finite € — net for A.
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¢ Definition(Lebesgue Number): Let U= { U.: a€ A} be an open
cover of metric space (X, d). A real number A> Ois called a
Lebesgue Number for the open cover U= {U,: a€ A} if for each
subset A of X with diam(A) < A, there is at least one U, which
contains A.

v" Note: If A is a Lebesgue number of an open cover, then any § >
A is also a Lebesgue Number for that open cover.

» Theorem 5.2: In a metric space (X,d), asubset A of X is
compact implies it is totally bounded.

Proof: Let (X,d) beametricspace and A(S X) be compact.

Then clearly for any €> 0, U = {S.(x):x € A} is an open cover of A.
By our hypothesis Ais compact. Then 3 a finite sub-cover say U, =
{S.(x;):x; €A,i =1,2,..,n}, then

n
A C Sg (Xl)
i=1
Let us consider the set {x;,x,, ..., x,,} = B (say). Then B is clearly a
finite € — net for A. Hence A is totally boundedm

» Theorem 5.3: In a metric space (X, d), if a subset A of X is
totally bounded then it is bounded.

Proof: Let (X, d) be a metric space and A(S X) be totally bounded.
Then for any € > 0 d a finite € — net for A. Choose e=1(>0) , 3
finitely many points x4, x,, .., X, in 4 such that
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AcC UL;S; (x).Let M = max {d(xi,xj)}. Then for any x,y €

1<i,jsn

Awithx #y 31 <1i,j <n (i #j)suchthatx € §;(x;) and € 5;(x;)

Thus from triangle inequality

d(x,y) <d(x,x;)+ d(xl-,xj) + d(xj,y) <1+M+1
=>d(x,y)<2+M
This shows that diam(A4) < 2 + M. Hence A is bounded m

v" Note: The converse of the above theorem is not true in general.
For example we discuss the following:

Consider the [, space consisting of real sequences {x,} such that
Y21 xf < oo and the metricis defined by d(x,y) = /X2, (x; — ;)2
x={xn},y =y} € L2

Further we consider the subset

A ={x={xn}€ lz:z:xi2 = 1}

i=1

Or it can be defined as
A={x={x,} €l,:d(x,0) =1},
where 0={0,0,0,..,0} € L.
Foranytwox = {x,}, vy ={y,} € L,
d(x,y) <d(x,0)+d0,y)=1+1=2
This shows that A is bounded.
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Consider the set B = {eq, €5, €3, ... ... ... } of points of A, where ¢; =

(0,0,0, ..., L;7t positions 0,0 e e« ... ). Then for any m,n € N
with m # n, d(e,,, e,) = V2. Observe that A any finite \/% — net

for the set A.

To show, if possible let 3 a finite % — net B = {a,,a,, ..., a, } for the

set A. Then at least one S 1 (a,) contains infinitely many points of A.
V2

Let e;,e; € S1 (ay). By triangle inequality
V2

V2 =d(e,, e,) < d(e,, a;) + d(ag, e,) < % + 715 =/2

which is a contradiction. So there does not exists any finite 5 net

for the set A. Hence A is not totally bounded.

v Note: In a metric space any subset of a totally bounded set is
totally bounded.

¢ 6. Sequential and Frechet compactness

Definition: A metric space (X, d) is said to be sequentially compactif
every sequence {x, }of points of X has a convergent subsequence.

Definition: A metric space (X, d) is said to be Frechet compact or BW
—compactif every infinite subset of X has a limit point in X

> Theorem 6.1: A metric space(X, d) is sequentially compact if
and only if it is BW- compact.
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Proof: Let (X,d) be sequentially compact. Also let A be any infinite
subset of X. Consider a sequence {x,,} of points of A. Since X is
sequentially compact, {x, } has a convergent subsequence {x,, }

which converges to some x € X.

i.e. Ill_r){)lo Xn, = X.

So fore > 03 ky, € N for which the open sphere S.(x) contains all
xp, forall k = k.

ie. x,, € S.(x)Vk =k,

Therefore x is a limit point of A.

Hence (X, d) is BW- compact.

Conversely, let (X,d) be BW-compact. Let {x,,}be an arbitrary
sequence in Xand suppose A = {x,:n € IN}. Then A4 is an infinite set
in X.

If the range of the sequence is finite set, then a value is repeatedly
occurs infinite times and then the sequence contains a constant
subsequence which is obviously convergent. Hence (X, d) is
sequentially compact.

If the range set of the sequence be infinite, then that set is an infinite
set. Therefore it has a limit point in X say x (since (X, d) is BW-
compact by hypothesis).

Since x is a limit point, for e=1(>0) S;(x) N A is infinite. Choose an
element x, € S;(x)NA

1
For n, > n;and € = 5 choose x,, € Si(x)NA
2
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Proceeding in this way we get a subsequence {x,,:n; <n,; <
N3, ..... } of {x}such that d(x,,, x) < %for each k € M. This shows

that the subsequence {x,, } converges to x. Hence (X, d) is
sequentially compactm

= Lemma (Lebesgue Covering Lemma):

Every open cover of a sequentially compact metric space (X, d)has a
Lebesgue number.

Proof: Let U= {U.: a€ A} be any open cover of X. Assume that it has
no Lebesgue number. Then for each n € I¥, 3 x,, € X such that
S1(x,)is not contained in any member U, of ‘U. Since X is

n
sequentially compact, the sequence {x,, }has a convergent

subsequence{xnk: ng<n, <-- } converges to some point x € X.

ie. lim x,,, =x

n—->00 k

Since U= { Us: a€ A}is an open cover of X, then 3 one member Ug of
U such that x € Up. As Upis open, we can choose € > 0 such
that Ug 2 S5¢(x). Now S, (x) contains all but finitely many terms of

the subsequence {x, }.In particular 3 m €N withm > i such that

Xm € Sc(x).Nowlety € S.(x,,) 2 d(y,x,) < e=>d(y,x) <
d(y, x,) +d(x,x) <e+e=2¢

=Yy € SZs(x) = Ss(xm) S SZs(x)-
Thus S1(xp) S Se(xm) S Sz¢(x) & Up. This contradicts the fact
that S1(x,,) is not contained in any member of U. Hence (X, d)has a

Lebesgue numberm
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» Theorem 6.2 : A metric space(X, d) is compact & (X, d) is
sequentially compact.

Proof: Let (X, d) be compact and A is an infinite subset of X which
has no limit point in X. So A is closed in X. Then for each x €
A, thereis an €, > 0 such that S, (x) N A = {x}. Otherwise if there

exists other points in S,_(x) N A other than x, x would be a limit
point of A.

Clearly (Uyea Se,, (x)) U (X — A) is an open cover of X which admits

no finite subcover. This contradicts our hypothesis (X, d) is
compact. Hence A must have a limit pointin X. Since A4 is an
arbitrary infinite subset of X, has a limit pointin X implies (X, d) is
BW-compact and hence by previous theorem it is sequentially
compact.

Conversely, suppose that (X, d) be sequentially compact. Also let
U= {Us: a€ A} be an open cover of X. Since (X, d) is sequentially
compact therefore by Lebesgue Covering lemma

Has a Lebesgue number say § > 0. Also (X, d)being sequentially
compact is totally bounded and so it has a finite g — net, say
{x1, %2, oo, Xy }-

Then X = UL, Ss(x;)
3
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Now for eachi,1 < i < n we have diam(Ss(x;)) < ? < 6, so by
3
definition of Lebesgue number there exists at least one U, such that
Ss(x;) €Uy, 1=12,..,n
3

SUL Ss(x) € ULy U,
3

= X € Uity Ug,

Hence {Uai: [ =1,2,..,n}is a finite subcover of U= {U.: a€ A} for X
and so (X, d) is compactm

» Theorem 6.3: A subset A of a metric space (X, d) is totally
bounded if and only if every sequence in A has a Cauchy
subsequence.

Proof: Firstlet A(S X)be totally bounded and {x,,} be a sequence
in A. By total boundedness of 4, 3 a finite 1-net which covers A.
Then at least one of these open balls must contain infinite number of
terms of the sequence{x,}. Let B, be that open ball. Choose x;, € B,

for some k; € N. Being a subset of A which is totally bounded set,
B, is also totally bounded. Hence B; can also be covered by a finite

1 . e
3~ net, at least one of which contains infinite number of terms of

the sequence {x,}. Let B, be that open ball. Choose k, € N such that
k, > k, and xi, € B,. Proceeding in this way we have for eachn €

N open balls B,,(€ B,,_; € B,,_, € - € B, € B;) if radius% such
that x, € B, with k; <k, < -+ < ky. Clearly {x,_}isa Cauchy
subsequence of the sequence {x,,}
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. 2 :
InfactVi,j = n, Xper Xie; € B, sothatd (xki,xkj) <-<eg if we

2
choose n > -

Conversely, let A be a subset of a metric space (X, d)and every
sequence in Ahas a Cauchy subsequence. We show that 4 is totally
bounded.

If possible let A is not totally bounded. Then for some € > 0, 4 has
no finite € — net. If x; € A, there must be some x, € A such that
d(x1,x,) = €. Otherwise {x;} would be a finite € — net in A.
Similarly since {x;, x,} cannot be an € — net in 4, 3 x3 € A such that
d(x1,x3) = € and d(x3,x,) = €. Proceeding in this way we constrict
a sequence {x,} of points of 4 such that for m # nd(x,,, x,,) = €.

It is clear that this sequence cannot have a Cauchy subsequence.
This is a contradiction to our assumption. Hence 4 must be totally
boundedm

» Prove that a metric space (X, d) is sequentially compact if and
only if it is complete and totally bounded.

Proof: Let (X, d) be sequentially compact. Then every sequence {x,,}
of points of X has a convergent subsequence in X . Let {xnk} be the
convergent subsequence of {x,} which converges to the point x €
X. Since every convergent sequence in a metric space is a Cauchy
sequence, {xnk} is a Cauchy subsequence of {x, }. Hence every
sequence in (X, d) have a Cauchy subsequence.Then by_Theorem 6.3

(X, d) is totally bounded.
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Now we show that (X, d)is complete. Let {x,,} be a Cauchy sequence
in X. Then for sequentially compactness {x,,} has a convergent
subsequence. By the result “ A Cauchy sequence in a metric space
(X, d) is convergent if and only if it has a convergent subsequence”
the given Cauchy sequence converges. This proves that (X, d)is
complete.

Conversely, Let (X, d) be complete and totally bounded and {x,,} be
a sequence in (X, d). Then by Theorem 6.3 the sequence {x, }has a

Cauchy subsequence {xnk: n; <ny <.} As (X,d)is complete,

{xnk}converges in X. Hence (X, d) is totally boundedm
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